If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^-10m+24=(m-12)(m+2)
We move all terms to the left:
m^-10m+24-((m-12)(m+2))=0
We add all the numbers together, and all the variables
-9m-((m-12)(m+2))+24=0
We multiply parentheses ..
-((+m^2+2m-12m-24))-9m+24=0
We calculate terms in parentheses: -((+m^2+2m-12m-24)), so:We add all the numbers together, and all the variables
(+m^2+2m-12m-24)
We get rid of parentheses
m^2+2m-12m-24
We add all the numbers together, and all the variables
m^2-10m-24
Back to the equation:
-(m^2-10m-24)
-9m-(m^2-10m-24)+24=0
We get rid of parentheses
-m^2-9m+10m+24+24=0
We add all the numbers together, and all the variables
-1m^2+m+48=0
a = -1; b = 1; c = +48;
Δ = b2-4ac
Δ = 12-4·(-1)·48
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{193}}{2*-1}=\frac{-1-\sqrt{193}}{-2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{193}}{2*-1}=\frac{-1+\sqrt{193}}{-2} $
| 55=6x+4x+5 | | 6y-3=-12 | | 5(4n-4=-60 | | T1/8^2x=4^12 | | 5=2.2/w | | 1/5(30x-10)=15 | | x-50=x/2+25 | | 5=2.2/w | | 4x-4=2(4-x) | | p(5)=8(2^5) | | -9+5v=-44 | | −10=−14v+14v | | n/1+3=3 | | 2s-6s-9=5-6s | | |x^2+6x-4|=12 | | 7x=12−5x | | 5x+4(-5/4x-3)=12 | | 2+v/9=3 | | a-2/9+3-1=3/a+2 | | {3a-4}+{a+2}=180 | | -14=4y-6 | | 6+n/8=5 | | 4·(x−5)=−12 | | 2x+2-2x=8x-14 | | 4x-4+20x+10+18=180 | | g/3*1=4/3*1/3 | | 6=n/8=5 | | 50+x+5=4x+10 | | 282=151-v | | 0.8-2x=2.7 | | -5+x/16=-6 | | -1+-2s=-7 |